has a pyramidal equilibrium geometry. We predict a bond angle of 111.6° and an inversion barrier of 2.3 kcal mol⁻¹. These results are consistent with recent neutron diffraction findings in the solid state (yielding HOH bond angles of 110.4° for p-CH₃C₆H₄SO₃-H₃O⁺ and 112.7° for F₃CSO₃-H₃O⁺),¹⁶ and Symons' interpretation of the ¹⁷O NMR spectrum of H₃O⁺ (yielding a bond angle of 111.3°).²

(16) (a) Lundgren, J. O.; Williams, J. M. J. Chem. Phys. 1973, 58, 788.
(b) Lundgren, J. O.; Olovsson, I. In "The Hydrogen Bond", Schuster, P., Zundel, G., Sandorfy, C., Eds.; North-Holland: Amsterdam, 1976; Vol. II.

Triplet GpCpA Forms a Stable RNA Duplex

D. Alkema, R. A. Bell, P. A. Hader, and T. Neilson*

Departments of Biochemistry and Chemistry McMaster University Hamilton, Ontario L8N 3Z5, Canada Received December 5, 1980

Perfect RNA duplexes containing three Watson-Crick base pairs are unstable under physiological conditions.¹ Triribonucleotides, however, can form stable duplexes with single stranded helical regions, such as in tRNA loops where the bases already stacked in the helix account for this enhanced stability.² An alternate means of increasing base stacking and thus strengthening overall duplexes is the presence of dangling bases.³ We report the first triribonucleotide to form a simple stable duplex, GpČpA:GpČpA, which contains two G·C Watson-Crick base pairs and two 3'-dangling adenosines. This duplex is similar in stability to the corresponding self-complementary tetramer duplex, formed from UpGpCpA, which contains four Watson-Crick pairs, and must derive its stability over the dinucleotide duplex GpC:GpC by virtue of its 3'-dangling adenosine residues whose contributions to duplex stability approximate those of A·U pairs.

Oligoribonucleotides, GpC, GpCpA, GpCpApA, and ApGpC, were synthesized by using a phosphotriester method.⁴ Variable-temperature ¹H nuclear magnetic resonance spectroscopy was used to monitor duplex stability. The chemical shift vs. temperature changes for the aromatic and ribose H-1' protons of GpCpA are shown in Figure 1 and listed in Table I. The averaged $T_{\rm m}$ for the sigmoidal plots of these protons is 33 °C at 7.3 mM. The plots displayed in Figure 1 are only consistent with a GpCpA duplex containing two Watson-Crick base pairs. The chemical shift of CH-5 changes by 0.615 ppm to higher field over the temperature range 70-10 °C, and this upfield movement is characteristic of a CH-5 on a cytidine which is involved in a normal G·C Watson-Crick base pair as is shown by the 0.559-ppm upfield shift for the CH-5 in the UGCA duplex (see Table II). Protons, AH-8 and AH-2, of the dangling adenosines exhibit pronounced upfield chemical shift changes during GpCpA duplex formation. In addition, the $J_{1',2'}$ coupling constants for the ribose H-1' protons of the guanosine and cytidine residues collapse to <0.5 Hz below 30 °C, while the $J_{1',2'}$ values for adenosine decrease but do not become <0.5 Hz until close to O °C. This is indicative of strong GC stacking, while the 3'-adenosine unit still retains some flexibility in the duplex.⁵

Although the trimer, GpCpA, contains a purine-pyrimidinepurine sequence, these results provide an interesting contrast to

(d) Neilson, T.; Romaniuk, P. J.; Alkema, D.; Everett, J. R.; Hughes,
 D. W.; Bell, R. A. Nucleic Acids Res. Spec. Publ. 1980, No. 7, 293-311.
 (4) Werstiuk, E. S.; Neilson, T. Can. J. Chem. 1976, 54, 2689-2696.
 (5) Cheng, D. M.; Danyluk, S. S.; Dhingra, M. M.; Ezra, F. S.; MacCoss,

M.; Mitra, C. K.; Sarma, R. H. Biochemistry 1980, 19, 2491-2497 and references therein.

Figure 1. Chemical shift vs. temperature plots for GpCpA at 7.3 mM. Sample was dissolved in 100% D₂O containing 0.01 M sodium phosphate buffer (pD 7.0) and 1.0 M sodium chloride.

those obtained from studies of similar type of base sequence which preferred internal bulge base conformations⁶ at lower temperatures.

The spectacular stability of the GpCpA duplex containing a 3'-dangling adenosine is even more dramatic when compared to the trinucleotide ApGpC containing a 5'-dangling adenosine.

 ⁽a) Brahms, J.; Aubertin, A. M.; Dirheimer, G.; Grunberg-Manago, M. Biochemistry 1969, 8, 3269-3277.
 (b) Jaskunas, S. R.; Cantor, C. R.; Tinoco, I. Jr., Ibid. 1968, 7, 3164-3178.
 (c) Borer, P. N.; Dengler, B.; Tinoco, I., Jr.; Uhlenbeck, O. C. J. Mol. Biol. 1974, 86, 843.
 (2) (a) Uhlenbeck, O. C.; Baller, J.; Doty, P. Nature (London) 1970, 225, 508-510.
 (b) Grosjean, H. J.; de Henau, S.; Crothers, D. M. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 610-614 and references therein.
 (a) Martin, F. H.; Uhlenbeck, O. C.; Doty, P. J. Mol. Biol. 1971, 57, 201.
 (b) Neilson T.; Romaniuk P. 1: Alkema D.; Everett I. R.; Hughes

⁽⁶⁾ Lee, C.-H.; Tinoco, I., Jr., Biophys. Chem. 1980, 11, 283-294.

Table I. NMR Chemical Shift Assignments for GCA (7.3 mM) over the Temperature Range 70-0 °C

	temperature, °C											
resonance	70.6	59.6	47.9	38.5	27.1	20.0	12.0	0.6	T _m			
A(3)H-8	8.348	8.340	8.310	8.264	8.191	8.156	8.120	8.085	30.5			
A(3)H-2	8.191	8.153	8.069	7.955	7.790	7.703	7.624	7.564	32			
G(1)H-8	7.920	7.925	7.941	7.969	8.009	8.031	8.045	8.053	32			
C(2)H-6	7.709	7.699	7.685	7.669	7.647	7.642	7.641	7.634	NSB ^a			
A(3)H-1'	6.061	6.057	6.046	6.036	6.027	6.022	6.017	6.010	NSB			
C(2)H-1'	5.883	5.850	5.808	5.744	5.652	5.600	5.554	5.516	32			
G(1)H-1'	5.812	5.807	5.800	5.801	5.811	5.817	5.812	5.798	NSB			
C(2)H-5	5.837	5.774	5.659	5.527	5.362	5.287	5.216		39			
									av $T_{\rm m} = 33$			

^a NSB = no sigmoidal behavior.

Table II. NMR Chemical Shift Assignments for UGCA (8.2 mM) over the Temperature Range 70-0 °C

		temperature, °C											
resonance	70.6	62.0	53.3	43.4	38.5	33.4	27.9	19.8	12.1	2.5	T _m		
AH-8	8.362	8.359	8.349	8.320	8.274	8.232	8.167	8.092	8.014	7.977	30.5		
AH-2	8.202	8.183	8.147	8.066	7.978	7.887	7.760	7.616	7.463	7.369	30.5		
GH-8	7.975	7.975	7.978	7.984	7.978	7.978	7.958	7.919	7.864		40.5		
UH-6	7.716	7.727	7.747	7.793	7.819	7.845	7.874	7.874	7.825	7.781	NSB		
CH-6	7.711	7.700	7.692	7.675	7.664	7.661	7.642	7.646	7.638		NSB		
AH-1'	6.068	6.063	6.062	6.057	6.049	6.045	6.039	6.027	6.027	6.021	32.0		
CH-1'	5.875	5.865	5.845	5.808	5.777	5.812	5.812	5.819	5.806		NSB		
CH-5	5.853	5.806	5.749	5.640	5.565	5.488	5.407	5.335	5.259	5.221	38.0		
UH-5	5.811	5.798	5.790	5.793	5.791	5.798	5.798	5.782	5.764	5.749	NSB		
UH-1'	5.811	5.803	5.811	5.769	5.733	5.682	5.627	5.511	5.477	5.467	30.5		
GH-1'	5.794	5.812	5.811	5.769	5.770	5.739	5.627	5.526	5.646	5.524	32.0		
											av $T_{\rm m} = 33$		

Table III. NM	IR Chemical Shift	Assignments for AGC	(16 mM) over the Tem	perature Range 70-0 °C
---------------	-------------------	---------------------	----------------------	------------------------

resonance	temperature, °C										
	72.1	60.6	50.0	37.7	31.7	20.6	9.6	0.4			
AH-8	8.238	8.235	8.235	8.227	8.224	8.213	8.191	8.191			
AH-2	8.170	8.143	8.116	8.072	8.050	8.004	7.945	7.909			
GH-8	7.934	7.909	7.882	7.842	7.820	7.768	7.687	7.627			
CH-6	7.748	7.737	7.725	7.707	7.698	7.677	7.643	7.627			
AH-1'	5.969	5.960	5.953	5.935	5.926	5.899	5.846	5.821			
CH-5	5.872	5.834	5.788	5.724	5.698	5.639	5.533	5.493			
CH-1'	5.889	5.866	5.854	5.834	5.826	5.802	5.767	5.740			
GH-1'	5.809	5.778	5.754	5.702	5.678	5.630	5.566	5.526			

Table IV. NMR Chemical Shift Assignments for GCAA (7.3 mM) over the Temperature Range 70-0 $^{\circ}$ C

	temperature, °C											
resonance	70.8	60.8	51.0	45.9	40.5	35.7	30.2	25.1	19.6	9.4	T _m	
A(3)H-8	8.313	8.306	8.278	8.257	8.224	8.166	8.098	8.080	8.074	8.047	36	
A(4)H-8	8.313	8.306	8.278	8.257	8.224	8.190	8.138	8.120	8.117	8.047	38.5	
A(4)H-2	8.181	8.166	8.150	8.138	8.126	8.114	8.098	8.080	8.074	8.047	35	
A(3)H-2	8.101	8.065	8.001	7.943	7.857	7.760	7.632	7.516	7.418	7.256	31	
GH-8	7.909	7.912	7.921	7.928	7.949	7.967	7.989	8.013	8.045	8.047	31	
CH-6	7.717	7.713	7.707	7.699	7.688	7.676	7.646	7.640	7.635	7.625	35	
A(4)H-1'	6.038	6.024	6.001	5.979	5.957	5.932	5.884	5.874	5.880	5.874	33.5	
A(3)H-1'	5.977	5.957	5.940	5.930	5.917	5.905	5.884	5.832	5.829	5.789	NSB	
CH-5	5.849	5.808	5.739	5.685	5.612	5.530	5.437	5.357	5.283		36	
CH-1'	5.867	5.849	5.817	5.794	5.757	5.713	5.657	5.609	5.572	5.517	33	
GH-1'	5.809	5.793	5.806	5.794	7.795	5.803	5.803	5.808				
											av $T_{\rm m} = 34$	

Chemical shift vs. temperature changes for the aromatic and ribose H-1' protons of ApGpC at 16.0 mM are shown in Table III. The small chemical shift changes observed are typical for all reported trinucleotides^{6.7} and implies that for the molar concentration range (1-10 mM) the averaged T_m value would be <0 °C. The behavior of the CH-5 proton of ApGpC is also indicative of there being no significant interaction of cytidine and guanosine in the normal Watson-Crick manner at temperatures down to 0 °C.

vations that 3'-dangling residues contribute more to duplex stability than the corresponding 5'-dangling residues have been previously reported.^{3,8} The greater helical overlap of a 3'-base residue generates increased aromatic ring-current interaction within a strand, enhancing base stacking which in turn strengthens duplex formation. Our own unpublished studies indicate that within single strands, chemical shift parameters for 3'-adjacent bases are greater than those for corresponding 5' neighbors. Larger shift parameters⁹ are used for flanking 3' neighbors when assigning ring

(8) Gennis, R. B.; Cantor, C. R. Biochemistry 1970, 9, 4714.

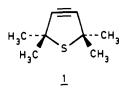
⁽⁷⁾ Everett, J. R.; Hughes, D. W.; Bell, R. A.; Alkema, D.; Neilson, T.; Romaniuk, P. J. *Biopolymers* **1980**, 19, 557-573.

protons in A·U and G·C hydrogen-bonded systems.

Comparison of GpCpA with UpGpCpA is significant. The chemical shift vs. temperature data for the aromatic and ribose H-1' protons of UpGpCpA at 8.2 mM are contained in Table II, and its average $T_{\rm m}$ was 33 °C. Remarkably the GpCpA duplex which contains only two Watson-Crick base pairs and two dangling adenosine residues is equal in stability to the UpGpCpA duplex which contains four Watson-Crick base pairs. We consider that a combination of factors, base-stacking, hydrophobic interactions, solvation and entropic effects, as well as Watson-Crick hydrogen bonding, contribute to duplex stability.

Stability of the GpCpApA duplex was also studied and its T_m found to be 34 °C at 7.3 mM (Table IV). Behavior was similar to that for GpCpA, and its was noteworthy that the effects of 3'-terminal dangling adenosines were cooperative. However, the residue immediately adjacent to the base-paired region appears to make a major contribution to duplex stability.

Acknowledgment. We thank Ian Wigle for developing the computer analysis in the determination of T_m values. This research was supported by NSERC of Canada.


(9) Kearns, D. R.; Shulman, R. G. Acc. Chem. Res. 1974, 7, 33.

Synthesis of a Thiacyclopentyne

John M. Bolster and Richard M. Kellogg*

Department of Organic Chemistry, University of Groningen 9747 AG Groningen, The Netherlands Received December 22, 1980

As a step in a program of generating and studying sulfurcontaining reactive intermediates,^{1,2} we undertook the synthesis of 1. This was a reasonable objective since good evidence for

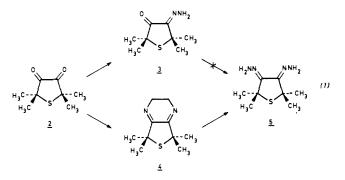
the existence of cyclopentyne as a short-lived intermediate is available.³⁻⁵ Strained cycloalkynes and arenes remain matters of fundamental, theoretical, and synthetic interest to organic chemistry.⁶ It seems likely that the ring strain in 1 will be less

(2) Tetramethyleneethanes: Beetz, T.; Kellogg, R. M. J. Am. Chem. Soc.
(2) Tetramethyleneethanes: Beetz, T.; Kellogg, R. M. J. Am. Chem. Soc.
(3) (a) Wittig, G.; Krebs, A.; Pohlke, R. Angew. Chem. 1960, 72, 324. (b) Wittig, G.; Weinlich, J.; Wilson, E. R. Chem. Ber. 1965, 98, 458-470. (c) Wittig, G.; Krebs, A. Ibid. 1961, 94, 3260-3275. (d) Wittig, G.; Pohlke, R. Ibid. 1961, 94, 3276-3286. (e) Wittig, G.; Heyn, J. Liebigs Ann. Chem. 1972, 756, 1-13. (f) Montgomery, L. K.; Roberts, J. D. J. Am. Chem. Soc. 1960, 82, 4750-4751. (g) Montgomery, L. K.; Scardiglia, F.; Roberts, J. D. Ibid.
1965, 87, 1917-1925. (h) Chapman, O. L.: Pure Anpl. Chem. 1979, 51. 1965, 87, 1917-1925. (h) Chapman, O. L.; Pure Appl. Chem. 1979, 51, 331-339.

(4) Other derivatives: (a) Wittig, G.; Heyn, H. Chem. Ber. 1964, 97, 1609–1618. (b) Erickson, K. L.; Wolinsky, J. J. Am. Chem. Soc. 1965, 87, 1142–1143. (c) Gassman, P. G.; Valcho, J. J. Ibid. 1975, 97, 4768–4770. (d) Gassman, P. G.; Gennick, I. Ibid. 1980, 102, 6863-6864. (e) Nakayama, J Segiri, T.; Ohya, R.; Hoshino, M. J. Chem. Soc., Chem. Commun. 1980, 791-792. Thiophyne: (f) Reinecke, M. G.; Newsom, J. G. J. Am. Chem. Soc. 1976, 98, 3021-3022. (g) Del Mazza, D.; Reinecke, M. G. Heterocycles 1980, 14, 647-649.

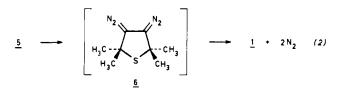
(5) Reviews: (a) Hoffmann, R. W. "Dehydrobenzene and Cycloalkynes"; Marcel Dekker: New York, 1967. (b) Krebs, A. In "Chemistry of Acetylenes"; Viehe, H., Ed.; Marcel Dekker: New York, 1969. (c) Naka-gawa, M. In "The Chemistry of the Carbon-Carbon Triple Bond"; Patai, S., Ed.; Wiley: New York, 1978.

(6) See, for example: (a) Saxe, P.; Schaefer, H. F. J. Am. Chem. Soc. 1980, 102, 3239-3240. (b) Hart, H.; Lai, C.; Nwokogu, G.; Shamouilian, S.; Teuerstein, A.; Zhotogorski, C. Ibid. 1980, 102, 6649-6651.


Table I. Yields of Products Obtained from Oxidation of Dihydrazone under Various Conditions

	yield, % ^a									
experiment	7	8	9	10	11					
Ab	28.4	15.3	9.4							
B ^c	7.4	7.8	4.1	6.9						
C^d D ^e	10.8	6.3	3.6		12.6					
D ^e			48.5		4.1					
E^{f}			54							

^a Yields determined by ¹H NMR using CH₃SO₂CH₃ as internal ^b Oxidation with Pb(O₂CCH₃)₄ at 0 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^c Oxidation with MO($_2$ CCH₃)₄ at 0 °C under N₂ in pure redistilled C₆H₅N₃. ^d Oxidation with Pb(O₂CCH₃)₄ at 0 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^e Oxidation with MnO₂ at 20 °C under N₂ in with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran. ^f Oxidation with MnO₂ at 20 °C under N₂ in pure redistilled 2,5-dimethylfuran Mathematican Mathmatican Mathemati with MnO_2-2H_2O in CH_2CI_2 under N_2 at 20 °C.


than in cyclopentyne owing to the longer carbon-sulfur bonds. The methyl groups should sterically shield the reactive triple bond much as in stable 3,3,6,6-tetramethyl-1-thiacycloheptyne⁷ or 3,3,7,7-tetramethylcycloheptyne.⁸ We also thought it possible that the carbon-sulfur-carbon σ bond segment could stabilize the heavily distorted in-plane π system wherein much of the strain is located.⁹ On the negative side, the possibility is present that 1, if generated, would immediately eliminate the sulfur bridge.

The route followed to 1 is classical. Diketone 2, the synthesis of which has been reported,¹⁰ was converted to the dihydrazone 5 (eq 1). Direct treatment of 2 with H_2NNH_2, H_2O ,

 $H_2NNH_3^+$, HSO_4^- gave monohydrazone 3, which was not stable to the required forcing conditions¹¹ and decomposed rather than providing 5. An indirect route adapted from an earlier work of van Alpen¹² involving formation of dihydropyrazine 4^{13} and subsequent conversion (H2NNH2,H2O, H2NNH3+,HSO4, ethylene glycol, 120 °C, 4 h) was successful and gave 5 in 65% overall yield.

The dihydrazone 5 was subjected to oxidation. Bis(diazo) compound 6 is assumed to be formed and this should be a precursor of 1 (eq 2).²⁻⁵ Depending on the reaction conditions and

additives used, the products 7-11 were obtained. All these

(10) Bolster, J. M.; Kellogg, R. M. J. Org. Chem. 1980, 45, 4804-4805.
(11) Krebs, A.; Kimling, H. Liebigs Ann Chem. 1974, 2074-2084.
(12) van Alpen, J., Recl. Trav. Chim. Pays-Bas 1935, 54, 443-446.

⁽¹⁾ Thiocarbonyl ylides (review): Kellogg, R. M. Tetrahedron 1976, 32, 2165-2184.

⁽⁷⁾ Krebs, A.; Kimling, H. Angew. Chem. 1971, 83, 401.
(8) Krebs, A.; Kimling, H. Ibid. 1971, 83, 540-541.

⁽⁹⁾ Schmidt, H.; Schweig, A.; Krebs, A. Tetrahedron Lett. 1974, 1471-1474.

⁽¹³⁾ All compounds not explicitly mentioned in footnotes were charac-terized fully by spectral and analytical methods.